Disentangling the factors driving tree reproduction
نویسندگان
چکیده
منابع مشابه
Driving reproduction: RFamide peptides behind the wheel.
The availability of tools for probing the genome and proteome more efficiently has allowed for the rapid discovery of novel genes and peptides that play important, previously uncharacterized roles in neuroendocrine regulation. In this review, the role of a class of neuropeptides containing the C-terminal Arg-Phe-NH(2) (RFamide) in regulating the reproductive axis will be highlighted. Neuropepti...
متن کاملContext Aware Operation Reproduction for Safety Driving
Recent automobiles are equipped with compact appliances of many functions. These appliances provide comfortable time and space for a user while those operations lead to a danger for safety driving. We assume that if operations are eliminated using contexts of a driver and fellow passengers, accidents can be avoided. We propose an intelligent environment that can acquire a context such as operat...
متن کاملthe effect of traffic density on the accident externality from driving the case study of tehran
در این پژوهش به بررسی اثر افزایش ترافیک بر روی تعداد تصادفات پرداخته شده است. به این منظور 30 تقاطع در شهر تهران بطور تصادفی انتخاب گردید و تعداد تصادفات ماهیانه در این تقاطعات در طول سالهای 89-90 از سازمان کنترل ترافیک شهر تهران استخراج گردید و با استفاده از مدل داده های تابلویی و نرم افزار eviews مدل خطی و درجه دوم تخمین زده شد و در نهایت این نتیجه حاصل شد که تقاطعات پر ترافیک تر تعداد تصادفا...
15 صفحه اولDisentangling Factors of Variation via Generative Entangling
Here we propose a novel model family with the objective of learning to disentangle the factors of variation in data. Our approach is based on the spike-and-slab restricted Boltzmann machine which we generalize to include higher-order interactions among multiple latent variables. Seen from a generative perspective, the multiplicative interactions emulates the entangling of factors of variation. ...
متن کاملChallenges in Disentangling Independent Factors of Variation
We study the problem of building models that disentangle independent factors of variation. Such models could be used to encode features that can efficiently be used for classification and to transfer attributes between different images in image synthesis. As data we use a weakly labeled training set. Our weak labels indicate what single factor has changed between two data samples, although the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Ecosphere
سال: 2016
ISSN: 2150-8925,2150-8925
DOI: 10.1002/ecs2.1389